viernes, 6 de diciembre de 2013

TRANSFORMADOR

Se denomina transformador a un dispositivo eléctrico que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna, manteniendo lapotencia. La potencia que ingresa al equipo, en el caso de un transformador ideal (esto es, sin pérdidas), es igual a la que se obtiene a la salida. Las máquinas reales presentan un pequeño porcentaje de pérdidas, dependiendo de su diseño y tamaño, entre otros factores.
El transformador es un dispositivo que convierte la energía eléctrica alterna de un cierto nivel de tensión, en energía alterna de otro nivel de tensión, basándose en el fenómeno de la inducción electromagnética. Está constituido por dos o más bobinas de material conductor, devanadas sobre un núcleo cerrado de material ferromagnético, pero aisladas entre sí eléctricamente. La única conexión entre las bobinas la constituye el flujo magnético común que se establece en el núcleo. El núcleo, generalmente, es fabricado bien sea de hierro o de láminas apiladas de acero eléctrico, aleación apropiada para optimizar el flujo magnético. Las bobinas o devanados se denominan primario y secundario según correspondan a la entrada o salida del sistema en cuestión, respectivamente. También existen transformadores con más devanados; en este caso, puede existir un devanado "terciario", de menor tensión que el secundario.

Funcionamiento

Representación esquemática del transformador.
Este elemento eléctrico se basa en el fenómeno de la inducción electromagnética, ya que si aplicamos una fuerza electromotriz alterna en el devanado primario, debido a la variación de la intensidad y sentido de la corriente alterna, se produce la inducción de un flujo magnético variable en el núcleo de hierro.
Este flujo originará por inducción electromagnética, la aparición de una fuerza electromotriz en el devanado secundario. La tensión en el devanado secundario dependerá directamente del número de espiras que tengan los devanados y de la tensión del devanado primario.

Relación de Transformación

La relación de transformación indica el aumento o decremento que sufre el valor de la tensión de salida con respecto a la tensión de entrada, esto quiere decir, la relación entre la tensión de salida y la de entrada.
La relación entre la fuerza electromotriz inductora (Ep), la aplicada al devanado primario y la fuerza electromotriz inducida (Es), la obtenida en el secundario, es directamente proporcional al número de espiras de los devanados primario (Np) y secundario (Ns) , según la ecuación:
\frac{Ep}{Es}=\frac{Np}{Ns}
La relación de transformación (m) de la tensión entre el bobinado primario y el bobinado secundario depende de los números de vueltas que tenga cada uno. Si el número de vueltas del secundario es el triple del primario, en el secundario habrá el triple de tensión.
\frac{Np}{Ns}=\frac{Vp}{Vs}=\frac{I_s}{I_p}= m
Donde: (Vp) es la tensión en el devanado primario o tensión de entrada, (Vs) es la tensión en el devanado secundario o tensión de salida, (Ip) es la corriente en el devanado primario o corriente de entrada, e (Is) es la corriente en el devanado secundario o corriente de salida.
Transformer under load.svg
Esta particularidad se utiliza en la red de transporte de energía eléctrica: al poder efectuar el transporte a altas tensiones y pequeñas intensidades, se disminuyen las pérdidas por el efecto Joule y se minimiza el costo de los conductores.
Así, si el número de espiras (vueltas) del secundario es 100 veces mayor que el del primario, al aplicar una tensión alterna de 230 voltios en el primario, se obtienen 23.000 voltios en el secundario (una relación 100 veces superior, como lo es la relación de espiras). A la relación entre el número de vueltas o espiras del primario y las del secundario se le llama relación de vueltas del transformador o relación de transformación.
Ahora bien, como la potencia eléctrica aplicada en el primario, en caso de un transformador ideal, debe ser igual a la obtenida en el secundario:
P_1 = P_2
V_1 I_1 = V_2 I_2
El producto de la diferencia de potencial por la intensidad (potencia) debe ser constante, con lo que en el caso del ejemplo, si la intensidad circulante por el primario es de 10 amperios, la del secundario será de solo 0,1 amperios (una centésima parte).

GENERADOR

Un generador eléctrico es todo dispositivo capaz de mantener una diferencia de potencial eléctrica entre dos de sus puntos (llamados polosterminales obornes) transformando la energía mecánica en eléctrica. Esta transformación se consigue por la acción de un campo magnético sobre los conductores eléctricos dispuestos sobre una armadura (denominada también estátor). Si se produce mecánicamente un movimiento relativo entre los conductores y el campo, se generará una fuerza electromotriz (F.E.M.). Este sistema está basado en la ley de Faraday.
Aunque la corriente generada es corriente alterna, puede ser rectificada para obtener una corriente continua. En el diagrama adjunto se observa la corriente inducida en un generador simple de una sola fase. La mayoría de los generadores de corriente alterna son de tres fases.
El proceso inverso sería el realizado por un motor eléctrico, que transforma energía eléctrica en mecánica.

Otros sistemas de generación de corrientes eléctricas

No sólo es posible obtener una corriente eléctrica a partir de energía mecánica de rotación sino que es posible hacerlo con cualquier otro tipo de energía como punto de partida. Desde este punto de vista más amplio, los generadores se clasifican en dos tipos fundamentales:
  • Primarios: Convierten en energía eléctrica la energía de otra naturaleza que reciben o de la que disponen inicialmente, como alternadores, dinamos, etc.
  • Secundarios: Entregan una parte de la energía eléctrica que han recibido previamente, es decir, en primer lugar reciben energía de una corriente eléctrica y la almacenan en forma de alguna clase de energía. Posteriormente, transforman nuevamente la energía almacenada en energía eléctrica. Un ejemplo son laspilas o baterías recargables.
Se agruparán los dispositivos concretos conforme al proceso físico que les sirve de fundamento.

Generadores primarios

Se indican de modo esquemático la energía de partida y el proceso físico de conversión. Se ha considerado en todos los casos conversiones directas de energía. Por ejemplo, el hidrógeno posee energía química y puede ser convertida directamente en una corriente eléctrica en una pila de combustible. También sería su combustión con oxígeno para liberar energía térmica, que podría expansionar un gas obteniendo así energía mecánica que haría girar un alternador para, por inducción magnética, obtener finalmente la corriente deseada.
Energía de partidaProceso físico que convierte dicha energía en energía eléctrica
Energía magneto-mecánicaSon los más frecuentes y fueron tratados como generadores eléctricos genéricos.
Energía química (sin intervención de campos magnéticos)Celdas electroquímicas y sus derivados: pilas eléctricasbateríaspilas de combustible.
Ver sus diferencias en generadores electroquímicos.
Radiación electromagnéticaFotoelectricidad, como en el panel fotovoltaico
Energía mecánica (sin intervención de campos magnéticos)
Energía térmica (sin intervención de campos magnéticos)Termoelectricidad (efecto Seebeck)
Energía nuclear (sin intervención de campos magnéticos)Generador termoeléctrico de radioisótopos
Generador termoeléctrico de radioisótopos de la sonda espacial Cassini.
En la mayoría de los casos, el rendimiento de la transformación es tan bajo que es preferible hacerlo en varias etapas. Por ejemplo, convertir la energía nuclear en energía térmica, posteriormente en energía mecánica de un gas a gran presión que hace girar una turbina a gran velocidad, para finalmente, por inducción electromagnética obtener una corriente alterna en un alternador, el generador eléctrico más importante desde un punto de vista práctico como fuente de electricidad para casi todos los usos actuales.

Generadores ideales

Desde el punto de vista teórico (teoría de circuitos) se distinguen dos tipos de generadores ideales:1
* Generador de voltaje o tensión: un generador de voltaje ideal mantiene un voltaje fijo entre sus terminales con independencia de la resistencia de la carga Rcque pueda estar conectada entre ellos.
Figura 1: Generador de tensión ideal; E = I×Rc
* Generador de corriente o intensidad: un generador de corriente ideal mantiene una corriente constante por el circuito externo con independencia de la resistencia de la carga que pueda estar conectada entre ellos.
En la (Figura 1) se ve el circuito más simple posible, constituido por un generador de tensión constante E conectado a una carga Rc y en donde se cumpliría la ecuación:
E = I×Rc
Figura 2E = I×(Rc+Ri)
El generador descrito no tiene existencia real en la práctica, ya que siempre posee lo que, convencionalmente, se ha dado en llamar resistencia interna, que aunque no es realmente una resistencia, en la mayoría de los casos se comporta como tal.
En la (Figura 2) se puede ver el mismo circuito anterior, pero donde la resistencia interna del generador viene representada por una resistencia Ri, en serie con el generador, con lo que la ecuación anterior se transforma en:
E = I×(Rc+Ri)
Así, un generador real puede considerarse en muchos casos como un generador ideal de tensión con una resistencia interna en serie, o bien como un generador ideal de intensidad en paralelo con una resistencia.1

Fuerza electromotriz de un generador

Una característica de cada generador es su fuerza electromotriz (F.E.M.), simbolizada por la letra griega epsilon (ε), y definida como el trabajo que el generador realiza para pasar la unidad de carga positiva del polo negativo al positivo por el interior del generador.
La F.E.M. (ε) se mide en voltios y en el caso del circuito de la Figura 2, sería igual a la tensión E, mientras que la diferencia de potencial entre los puntos a y bVa-b, es dependiente de la carga Rc.
La F.E.M. (ε) y la diferencia de potencial coinciden en valor en ausencia de carga, ya que en este caso, al ser I = 0 no hay caída de tensión en Ri y por tanto Va-b = E.

MOTOR ELÉCTRICO


El motor eléctrico es aquel motor que transforma la energía eléctrica en energía mecánica, por medio de la repulsión que presenta un objeto metálico cargada eléctricamente ante un imán permanente. Son máquinas eléctricas rotatorias.
Algunos de los motores eléctricos son reversibles, ya que pueden transformar energía mecánica en energía eléctrica funcionando como generadores. Los motores eléctricos de tracción usados en locomotoras o en automóviles híbridos realizan a menudo ambas tareas, si se los equipa con frenos regenerativos.

Son muy utilizados en instalaciones industriales, comerciales y particulares como ventiladores, teléfonos y bombas, máquinas herramientas, aparatos electrodomésticos, herramientas eléctricas y unidades de disco, los motores eléctricos pueden ser impulsados por fuentes de la corriente continua (DC), tal como de bateríasautomóviles o rectificadores, o por fuentes de la corriente alterna (AC), tal como de la rejilla de poder, inversores o generadores. Los pequeños motores se pueden encontrar en relojes eléctricos. Los motores de uso general con dimensiones muy estandarizadas y características proporcionan el poder mecánico conveniente al uso industrial. Los más grandes de motores eléctricos se usan para propulsión del barco, compresión de la tubería y aplicaciones de almacenaje bombeado con posiciones que alcanzan 100 megavatios. Los motores eléctricos pueden ser clasificados por tipo de la fuente de la energía eléctrica, construcción interna, aplicación, tipo de la salida de movimiento, etcétera. Los dispositivos como solenoides magnéticos y altavoces que convierten la electricidad en el movimiento, pero no generan el poder mecánico utilizable respectivamente se les refiere como accionadores y transductores. Los motores eléctricos son usados para producir la fuerza lineal o la torsión (rotonda).

viernes, 29 de noviembre de 2013

LEYES MAGNETICAS

La ley de Lenz
El sentido de la corriente inducida sería tal que su flujo se opone a la causa que la produce

La ley de Lenz: nos dice que los voltajes inducidos serán de un sentido tal, que se opongan a la variación del flujo magnético que las produjo. Esta ley es una consecuencia del principio de conservación de la energía.

La polaridad de un voltaje inducido es tal, que tiende a producir una corriente, cuyo campo magnético se opone siempre a las variaciones del campo existente producido por la corriente original.

Lenz formula una ley que predice el sentido de la corriente inducida en una espira conductora cuando se produce una variación de flujo magnético externo a ella.

Ley  de Faraday.  Esta ley señala que la magnitud de la fuerza electromotriz (fem) inducida en un circuito es igual a la razón de cambio en el tiempo del flujo magnético a través del circuito.
También, los campos eléctricos cambiantes producen campos magnéticos.  
La intensidad de la corriente inducida en un circuito es directamente proporcional a la repidez con que cambia el flujo magnetico
La ley de Faraday se expresa matemáticamente como:
€= -Ф" " /t" "   o bien:
€=- (Фf-Фi)/t" "
Donde:
€= fem media inducida expresada en volts (v)
Фf= flujo magnético final medio en webers(wb)
Фi= flujo magnético inicial calculado en webers(wb)
T= tiempo en que se realiza la variación del flujo medido en segundos(s)
El signo (-) de la ecuación se debe a la oposición existente entre la fem inducida y la variación del flujo que la produce.
cuando se trata de una bobina que tiene N números de vueltas o espiras, la expresión matemática para calcular la fem inducida será:
€= -N (Фf-Фi)/t" "
Al calcular la fem inducida en un conductor recto de longitud (L) que se desplaza con una velocidad (v) en forma perpendicular a un campo de inducción magnética (B) se utiliza la expresión:
€= BLv

Ley de Gauss
El flujo eléctrico total fuera de una superficie cerrada es igual a la carga encerrada, dividida por la permitividad.
Aplicaciones de la Ley de Gauss
La ley de Gauss es una herramienta poderosa para el cálculo de los campos eléctricos cuando son originados por una distribución de cargas con suficiente simetría para poderse aplicar.
Si la distribución de cargas adolece de la simetría necesaria para aplicarle la ley de Gauss, entonces el campo debe obtenerse, sumando los campos de carga puntuales de los elementos de carga individuales.

PROPIEDADES MAGNETICAS

Propiedades Magnéticas

El magnetismo es un fenómeno físico por la que los materiales ejercen fuerzas de atracción o repulsión sobre otros..
www.wikipedia.org


Los electrones, son, por así decirlo, pequeños imanes. En un imán todos los electrones tienen la misma orientación creando una fuerza magnética.

Un material magnético, es aquel que presenta cambios físicos al estar expuesto a un campo magnético.

Se pueden clasificar en 8 tipos, pero solo tres son los que definiremos en profundidad.


Tipo de MaterialCaracterísticas
DiamagnéticoLas lineas magnéticas de estos materiales, son opuestas al campo magnético al que estén sometidos, lo que significa, que son repelidos. No presenta ningún efecto magnético aparente.
Ej: bismuto, plata, plomo, etc.
ParamagnéticoCuando están expuestos a un campo magnético, sus lineas van en la misma dirección, aunque no están alineadas en su totalidad. Esto significa, que sufren una atracción similar a la de los imanes.
Ej: aluminio, paladio, etc.
FerromagnéticoSon materiales que al estar a una temperatura inferior al valor determinado, presentan un campo magnético fuerte.
Ej: hierro, cobalto, níquel, etc.
AntiferromagnéticoNo es magnético aún habiendo un campo magnético.
Ej: óxido de manganeso.
FerrimagnéticoEs menos magnético que los Ferromagnético.
Ej: Ferrita de hierro.
SuperparamagnéticoMateriales Ferromagnéticos suspendidos en una Matriz Dieléctrica.
Ej: materiales de vídeo y audio
FerritasFerromagnético de bajo nivel de conductividad.
No magnéticosLos campos magnéticos no tienen efecto en ellos.
Ej: el vacío.

IMÁN NATURAL

Los imanes son muy importantes para nuestra vida. Ya que los vemos en muchos lugares como en las neveras & demás.
Los imanes tienen dos tipos:
    NATURALES:
    Tienen la propiedad de atraer todas las sustancias magnéticas. Su caracteristica de atraer hierros es natural & no es influida por los seres humanos.
Estan compuestos por el oxido de hierro
son aquellos que se encuentran en la Tierra y que atraen al hierro. Denominados magnetita , hoy sabemos que es hierro cristalino Fe3O4. Pero también la Tierra es un imán natural.

EJEMPLOS:imanes naturales: son aquellos que se encuentran en la Tierra y que atraen al hierro. Denominados magnetita ,Un imán natural es un mineral con propiedades magnéticas (magnetita).

ELECTROÏMAN


Un electro imán es un tipo de imán en el que el campo magnético se produce mediante el flujo de una corriente eléctrica, desapareciendo en cuanto cesa dicha corriente.
El tipo más simple de electro imán es un trozo de alambre enrollado. Una bobina con forma de tubo recto (parecido a un tornillo) se llama solenoide, y cuando además se curva de forma que los extremos coincidan se denomina toroide. Pueden producirse campos magnéticos mucho más fuertes si se sitúa un «núcleo» de material para magnético o ferromagnético (normalmente hierro dulce o ferrita, aunque también se utiliza el llamado acero eléctrico) dentro de la bobina. El núcleo concentra el campo magnético, que puede entonces ser mucho más fuerte que el de la propia bobina.
Los campos magnéticos generados por bobinas se orientan según la regla de la mano derecha. Si los dedos de la mano derecha se cierran en torno a la dirección del campo magnético B, el pulgar indica la dirección de la corriente I. El lado del electro imán del que salen las líneas de campo se define como polo norte.
Además, dentro de la bobina se crean corrientes inducidas cuando ésta está sometida a un flujo variable. Estas corrientes son llamadas corrientes de Foucault y en general son indeseables, puesto que calientan el núcleo y provocan una pérdida de potencia de si mismo.
File:Electromagnetism.pngLa principal ventaja de un electroimán sobre un imán permanente es que el campo magnético puede ser rápidamente manipulado en un amplio rango controlando la cantidad de corriente eléctrica. Sin embargo, se necesita una fuente continua de energía eléctrica para mantener el campo.

lunes, 25 de noviembre de 2013

IMÁN ARTIFICIAL

Un imán artificial es un cuerpo de material ferromagnético al que se ha comunicado la propiedad del magnetismo, ya sea mediante frotamiento con un imán natural o por la acción de corrientes eléctricas aplicadas en forma conveniente (electroimanación):

Imanes artificiales permanentes.- Son las sustancias magnéticas que al frotarlas con la magnetita, se convierten en imanes, y conservan durante mucho tiempo su propiedad de atracción.

Imanes artificiales temporales.- Aquellos que producen un campo magnético sólo cuando circula por ellos una corriente eléctrica. Un ejemplo es el electroimán.
Un electroimán es un tipo de imán en el que el campo magnetico se produce mediante el flujo de una corriente eléctrica, desapareciendo en cuanto cesa dicha corriente.
Fue inventado por el electricista británico William Sturgeon en 1825. El primer electroimán era un trozo de hierro con forma de herradura envuelto por una bobina enrollada sobre él. Sturgeon demostró su potencia levantando 4 kg con un trozo de hierro de 200 g envuelto en cables por los que hizo circular la corriente de una batería. Sturgeon podía regular su electro imán, lo que supuso el principio del uso de la energía eléctrica en máquinas útiles y controlables, estableciendo los cimientos para las comunicaciones electrónicas a gran escala.
El tipo más simple de electroimán es un trozo de cable enrollado. Una bobina con forma de tubo recto (parecido a un tornillo) se llama solenoide, y cuando además se curva de forma que los extremos coincidan se denomina toroide. Pueden producirse campos magnéticos mucho más fuertes si se sitúa un «núcleo» de material paramagnético o ferromagnetico (normalmente hierro dulce) dentro de la bobina. El núcleo concentra el campo magnético, que puede entonces ser mucho más fuerte que el de la propia bobina.
Los campos magnéticos generados por bobinas de cable se orientan según la regla de la mano derecha. Si los dedos de la mano derecha se cierran en torno a la dirección de la corriente que circula por la bobina, el pulgar indica la dirección del campo dentro de la misma. El lado del imán del que salen las líneas del campo se define como polo norte.